I came across this wonderful blog post about writing equations in a blog. I also found this post on a program that converts .tex files into posts.

Sample techniques below:


blah blah \int_{-\infty}^\infty e^{-x^2}\,dx=\sqrt\pi blah blah

In a Box

\int_{-\infty}^\infty e^{-x^2}\,dx=\sqrt\pi

Align Center

\displaystyle\int_{-\infty}^\infty e^{-x^2}\,dx=\sqrt\pi


\setlength\arraycolsep{2pt}\begin{array}{rl}  \displaystyle\int_{-\infty}^\infty e^{-x^2}\,dx&\displaystyle=\sqrt\pi,\smallskip\\  \displaystyle\int_{-\infty}^\infty e^{-ax^2}\,dx&\displaystyle=\int_{-\infty}^\infty e^{-y^2}\frac{dy}{\sqrt a}\smallskip\\  &\displaystyle=\sqrt{\frac\pi a}  \end{array}

Equation Numbering

\displaystyle C(S,t)= S N(d_1) - N(d_2) K e^{-rt} (1)

Numbering applied to two rows

\setlength\arraycolsep{2pt}\begin{array}{rl}  \displaystyle d_1&\displaystyle=\frac{\ln(S/K) + (r + \sigma^2/2)(T - t)}{\sigma \sqrt{T - t}}\bigskip\\  \displaystyle d_2&\displaystyle=d_1 - \sigma \sqrt{T - t}  \end{array} (2)


Comments are closed.

Copyright © 2005 – 2018 All Rights Reserved.

Enter your email address to follow this blog and receive notifications of new posts by email.


Blog Stats

  • 692,507 hits
%d bloggers like this: